The Significance of Land Titles Searches in Australia

The Significance of Land Titles Searches in Australia

Understanding property ownership is crucial when it comes to the process of buying or selling real estate.

One of the fundamental steps in this process is conducting a land title search.

We’ll explore the significance of land title searches and provide an overview of the process involved.

Why are land title searches important?

A land title search is an important part of any property transaction because it provides essential information about a property’s ownership, history and its legal status. Visibility into a property could surface any potential challenges and offer peace of mind.

Land title searches provide:

  • Ownership verification: A title search helps confirm the current property owner, and ensures that the seller has the legal right to transfer ownership.
  • Encumbrances: It reveals any liens, mortgages, or other encumbrances on the property. These could affect your ability to buy or sell the property.
  • Property boundaries: The search may include information on property boundaries, so you know exactly what you’re potentially buying.
  • Legal issues: Uncovering legal disputes or pending litigation related to the property is important to avoid potential future headaches.
Land title search

How land titles are managed and regulated

Land titles in Australia are managed and regulated at the state and territory level, with each jurisdiction having its own specific legislation and system for registering and managing land ownership.

  • Torrens Title System: Most land in Australia is governed by the Torrens Title System. This system provides a government-guaranteed title, offering security and certainty of ownership. When you own a property under Torrens Title, your name is recorded on the land title register, and you receive a Certificate of Title as evidence of your ownership.
  • Land Titles Offices: Each state and territory in Australia has its Land Titles Office or equivalent authority responsible for maintaining and registering land titles. These offices are responsible for recording all land transactions, including property sales, mortgages, and leases.
  • Transfer of Ownership: When you buy or sell a property, a legal process known as conveyancing occurs. This process involves transferring the ownership of the property from the seller to the buyer. Conveyancers or solicitors typically handle this process, ensuring that the transfer is legally valid and registered with the Land Titles Office.
  • Certificate of Title: The Certificate of Title is an important document that proves ownership of the property. It includes information about the property, such as its boundaries and any restrictions or encumbrances. In some states, this document is now stored electronically, and a paper certificate may not be issued.
  • Encumbrances and Easements: The land title register also records any encumbrances or easements that may affect the property. These could include restrictions on land use, rights of way, or access for utilities. It’s essential to understand these when buying a property.
  • Land Title Searches: Anyone can conduct a land title search, which provides information about a property’s title, ownership, encumbrances, and other relevant details. This is most commonly done during the due diligence process when purchasing property.
  • Transfer of Land Fees and Stamp Duty: When transferring ownership of a property, you’ll be required to pay fees to the Land Titles Office. Additionally, you may need to pay stamp duty, which is a state or territory tax based on the property’s purchase price.
  • Land Title Fraud Protection: Australian Land Titles Offices have implemented various measures to protect against fraud, including electronic conveyancing systems and identity verification processes.
  • Leasehold and Strata Titles: In addition to Torrens Title, some properties may have leasehold titles (common in some rural areas) or strata titles (for multi-unit buildings). These titles have their specific regulations and requirements.
Australian Land Title Search

Land title search must-knows

Accessing land title information

In Australia, land title information is usually managed at the state or territory level by government agencies. Each state and territory has its own land titles office or equivalent agency. Property information, including title records, can often be accessed online through these government websites or in person at their offices.

Property identification

To conduct a land title search, you typically need to provide specific details about the property, such as its address, lot and plan number, or title reference. This information is used to identify the property in the land titles database.

Requesting a search

You can request a land title search by filling out a form and paying a fee. Some government agencies also offer online search services where you can enter the property details and pay for the search online.

Types of land title searches

    • Current Title Search: Provides information about the current property owner, any mortgages or liens, and property boundaries.
    • Historical Title Search: Offers historical data on the property, including past ownership, transfers, and historical titles.
    • Encumbrance Search: Shows any encumbrances or restrictions on the property, such as easements, covenants, or caveats.
    • Plan and Survey Searches: Provide access to survey plans and related documents, which can be important for boundary and development information.

Search results

Once your search request is processed, you will receive a report or certificate that summarises the information available for the property. This report will include details about the property’s current owner, any encumbrances, and other relevant information.

Procedures and access

Methods of conducting land title searches may vary slightly between different states and territories in Australia. We recommend you check the specific land titles office or agency for each state or visit their official website (see Property Registry) for up-to-date and detailed information on conducting land title searches in Australia.

Land title search

Who might conduct title searches?

Land title searches are commonly completed to gain essential information before buying or selling a property, conduct due diligence, or settle legal matters related to land and property. Typically, a title search is done by:

  • Prospective buyers often perform a land title search to check that the property they intend to purchase has a clear title, free from any legal issues or encumbrances.
  • Sellers may choose to conduct a title search to confirm the accuracy of the property’s ownership records and to address any potential issues before listing the property for sale.
  • Real estate agents may assist buyers and sellers in conducting land title searches as part of their services. They can help facilitate the process and ensure that their clients have a full understanding of the property’s title status.
  • Real estate attorneys often conduct title searches as part of their due diligence when representing buyers or sellers in property transactions. They can identify and address legal issues that may affect the transaction.
  • Title companies specialise in providing title insurance and conducting title searches. They have access to comprehensive databases and can perform thorough searches to verify property ownership and identify any liens or encumbrances.
  • Mortgage lenders may also require a title search as part of the loan approval process to protect their interests and ensure that the property can be used as collateral for the loan.
  • In some cases, government agencies or land registries may be involved in title searches, especially when dealing with public lands or properties owned by government entities.

Read more from The Proptech Cloud

The Property Lifecycle

Discover the extensive property lifecycle and how it connects with other sectors. This infographic highlights the key phases and processes involved.

Why Is It So Difficult To Parse Addresses?

This blog explores what address parsing is and why it presents such unique challenges. Discover the intricacies behind address parsing and why getting it right is more complicated than it first appears.

How To Set Coordinate Reference Systems (CRS) In Snowflake Using Spatial Reference Identifiers

When working with geospatial data and mapping, you often need to specify the CRS for accurate and consistent spatial referencing and calculations. We guide you how.

Crafting a Storm Surge and Hurricane Risk Rating for Coastal Properties

A high-level approach to developing a storm surge and hurricane risk rating system to guide stakeholders with a vested interest in coastal properties.

How Proptech Is Revolutionising Real Estate

Proptech is the dynamic intersection of property and technology, and it’s reshaping real estate. And there’s still a huge potential for growth.

Coordinate Reference Systems (CRS) and Geodetic Datums: What’s the difference?

Coordinate Reference Systems (CRS) and Geodetic Datums: What’s the difference?

Coordinate Reference Systems (CRS) and geodetic datums are both used to represent the Earth’s surface, but they are different concepts, and importantly, serve different purposes. We provide definitions, highlight their differences and considerations for practical applications.

Coordinate Reference System (CRS)

A CRS is a coordinate-based system that provides a standardised framework for describing and locating points on the Earth’s surface. CRS is primarily used to represent specific locations on the Earth’s surface with precision and consistency.

A CRS can also be referred to as a spatial reference system (SRS) in many cases.

It defines a set of coordinates that can be used to represent the location of a point on the Earth’s surface.

A CRS typically includes a reference point (an origin), a set of axes (coordinate axes), and a unit of measurement (such as metres).

Geodetic Datum

A geodetic datum, on the other hand, is a mathematical model that defines the shape and size of the Earth’s surface, as well as the location of a reference point (the geodetic origin) and the orientation of the axes.

A geodetic datum provides the framework for measuring and comparing positions on the Earth’s surface.

It includes parameters describing the Earth’s ellipsoidal shape (semi-major and semi-minor axes), the flattening of the Earth, and the position of the datum origin.

Geodetic datums are essential for achieving high accuracy in geospatial measurements, especially over large areas.

What’s the difference?

While a CRS and a geodetic datum both provide frameworks for representing the Earth’s surface, they are different in their scope and purpose.

They serve distinct purposes in spatial representation and measurement.

The main differences between Coordinate Reference Systems and Geodetic Datums

Coordinate Reference Systems (CRS)Geodetic Datums
USESA CRS is used to represent the location of a point on the Earth's surfaceA geodetic datum is used to define the shape and size of the Earth's surface and the reference point used to measure positions
PRIMARY FOCUSA CRS deals primarily with coordinate systemA geodetic datum deals with the underlying shape and size of the Earth's reference ellipsoid
DEFINITIONSCRS definitions typically remain consistentGeodetic datums may evolve over time due to improvements in measurement techniques and advancements in geodesy
OPTIONSMultiple CRS are availableMultiple geodetic datums are available

It’s important to note that in many cases, CRSs are defined based on specific geodetic datums, ensuring compatibility and accuracy in spatial representations.

For example, the UTM system uses the WGS84 geodetic datum.

The decision between which CRS or geodetic datum to use

There are multiple choices of both CRS and geodetic datums available for users to select from.

The choice of CRS and geodetic datum depends on various factors such as the geographic region, application, and desired level of accuracy.

Geographic Region

Geographic Region

Different regions of the world may use specific CRS and geodetic datum combinations that are optimised for that region’s geographical characteristics.

Learn about the geodetic datums we use and reference in Australia.

Applications

Application

The type of application you’re working on can influence your choice of CRS and geodetic datum.

For example, surveying and mapping applications often require high accuracy, so a CRS and geodetic datum that offer precision are chosen. On the other hand, less accurate CRS and datum choices may be suitable for applications like general-purpose Geographic Information Systems or web mapping.

Accuracy

Desired Level of Accuracy

The level of precision required for a particular project or task is a crucial deciding factor. Some CRS and geodetic datum combinations are designed to provide centimetre-level accuracy, while others may provide accuracy at the metre or even decimetre level. So the choice really depends on the project’s specific accuracy requirements.

In practice, these above factors need to be carefully considered to ensure users choose the CRS and geodetic datum that is appropriate and aligns to their needs.

Considerations include whether it accurately represents geospatial data, can be integrated seamlessly with other data sources or used in specific analysis or modeling purposes. This will help avoid errors and inconsistencies in geospatial data handling and analysis.

Practical uses for CRS and geodetic datums

In practical terms, when working with geospatial data and mapping, you often need to specify both the CRS and the geodetic datum to ensure accurate and consistent spatial referencing and calculations. Keep in mind different geographic regions and applications may use specific datums and CRS to meet their needs, so understanding the distinction between them is essential for accurate geospatial referencing and analysis.

How to set these in Snowflake

If using a Geography data type the CRS used is WGS 84 and cannot be changed.

If using the Geometry data type, the CRS (or SRS) can be set with the ST_SETSRID function. To change the CRS of a geometry, use the ST_TRANSFORM function.

SELECT
ST_TRANSFORM(
ST_GEOMFROMWKT('POINT(389866.35 5819003.03)', 32633),
3857
) AS transformed_geom;

Read more from The Proptech Cloud

The Property Lifecycle

Discover the extensive property lifecycle and how it connects with other sectors. This infographic highlights the key phases and processes involved.

Why Is It So Difficult To Parse Addresses?

This blog explores what address parsing is and why it presents such unique challenges. Discover the intricacies behind address parsing and why getting it right is more complicated than it first appears.

How To Set Coordinate Reference Systems (CRS) In Snowflake Using Spatial Reference Identifiers

When working with geospatial data and mapping, you often need to specify the CRS for accurate and consistent spatial referencing and calculations. We guide you how.

Crafting a Storm Surge and Hurricane Risk Rating for Coastal Properties

A high-level approach to developing a storm surge and hurricane risk rating system to guide stakeholders with a vested interest in coastal properties.

How Proptech Is Revolutionising Real Estate

Proptech is the dynamic intersection of property and technology, and it’s reshaping real estate. And there’s still a huge potential for growth.

What is a Geodetic Datum?

What is a Geodetic Datum?

A geodetic datum can be described as a reference point or starting line that helps us measure and describe locations on the Earth’s surface.

Let’s use a sporting example to explain the concept.

Say you’re playing baseball, and have a home base where you start your game. This home base is like a geodetic datum. It’s a fixed point on the field that everyone agrees on as the reference point for scoring runs.

In baseball, all the distances are measured from home base. For example, how far you hit the ball or how far you run around the bases is based on your relationship to that central point. Without a fixed home base, it would be challenging to keep track of scores and positions accurately.

In the world of geography and mapping, Earth’s surface is vast and not perfectly flat, so we need a similar reference point. And a geodetic datum does just this, serving as a foundation for mapping and navigation.

What is a geodetic datum?

A geodetic datum is a model that defines the shape and size of the Earth’s surface, as well as the location of a reference point (the origin) and the orientation of the axes.

A geodetic datum provides the framework for measuring and comparing positions on the Earth’s surface.

Components

A geodetic datum consists of several key components:

  • Reference Ellipsoid: Describes the shape of the Earth (e.g., WGS 84).
  • Geodetic Center: Specifies the Earth’s centre point.
  • Prime Meridian: Defines the longitudinal reference line (e.g., Greenwich Meridian).

What purposes does a geodetic datum serve?

Geodetic datums serve as a reference framework for defining the shape of the Earth and its orientation. They provide a consistent basis for measuring latitude, longitude, elevations and are essential in geospatial analysis.

Geodetic datums help us create accurate maps, GPS navigation and positioning, and other location-based systems by giving us a standardised starting point to measure distances and positions from.

Different types of geodetic datums

Some geodetic datums are global, aiming to provide a worldwide reference framework, although many countries and regions around the world commonly use different geodetic datums to best fit the curvature of the Earth in their boundaries for greater accuracy. They may also vary from one region to another due to historical, technical, and practical reasons.

Examples of commonly used geodetic datums include the World Geodetic System 1984 (WGS84) and the North American Datum 1983 (NAD83).

Geodetic datum used in property and real estate

How geodetic datums are used in property and real estate

Geodetic datums are fundamental to property and real estate by providing a standard referencing system for defining property boundaries, mapping, location-based services, and decision-making processes related to land use and property transactions.

  • Property Surveys:
    When a property is surveyed, geodetic datums provide a reference framework for precisely locating property boundaries and corners. Surveyors use coordinates based on the datum to define the property’s position on the Earth’s surface accurately. This is critical for property boundaries, ensuring that the land’s legal description is accurate.
  • Land Records and Title Deeds:
    Property records and title deeds often include coordinate information based on a specific geodetic datum. This information ensures the accuracy and consistency of land ownership records.
  • Geographic Information Systems (GIS) Mapping: GIS used in the real estate industry rely on geodetic datums to create digital maps. These maps help real estate professionals and government agencies manage property information, zoning, and land use more effectively.
  • Location-Based Services:
    Real estate agents and online platforms use mapping applications that rely on geodetic datums to display property locations accurately. This helps potential buyers or renters understand the property’s precise location and nearby amenities.
  • Property Valuation:
    Geodetic datums can be used in property valuation models to consider factors like the property’s location, proximity to schools, transportation, and other geographic features. These factors can affect a property’s value.
  • Land Use Planning:
    Urban and regional planners use geodetic datums to assess the suitability of land for different purposes, such as residential, commercial, or industrial development. They consider geographic factors and zoning regulations.
  • Environmental Impact Assessment:
    When evaluating the environmental impact of a real estate development, geodetic datums help assess factors like proximity to water bodies, floodplains, and protected areas.
  • Infrastructure Development:
    Geodetic datums are essential for planning and constructing infrastructure, such as roads, utilities, and public transportation systems. Accurate location information ensures that developments are built correctly.
  • Property Insurance:
    Insurers may use geodetic datums to assess the risk associated with a property’s location, particularly regarding natural disasters like floods or earthquakes.

Geodetic datums are used widely by proptechs and serve a number of purposes in real estate and property management. 

Read our blog to learn about the geodetic datums we use and reference in Australia.

Read more from The Proptech Cloud

The Property Lifecycle

Discover the extensive property lifecycle and how it connects with other sectors. This infographic highlights the key phases and processes involved.

Why Is It So Difficult To Parse Addresses?

This blog explores what address parsing is and why it presents such unique challenges. Discover the intricacies behind address parsing and why getting it right is more complicated than it first appears.

How To Set Coordinate Reference Systems (CRS) In Snowflake Using Spatial Reference Identifiers

When working with geospatial data and mapping, you often need to specify the CRS for accurate and consistent spatial referencing and calculations. We guide you how.

Crafting a Storm Surge and Hurricane Risk Rating for Coastal Properties

A high-level approach to developing a storm surge and hurricane risk rating system to guide stakeholders with a vested interest in coastal properties.

How Proptech Is Revolutionising Real Estate

Proptech is the dynamic intersection of property and technology, and it’s reshaping real estate. And there’s still a huge potential for growth.

What is a Coordinate Reference System (CRS)?

What is a Coordinate Reference System (CRS)?

Imagine you’re a contestant on The Amazing Race or on a much smaller scale, playing treasure hunt, and are referencing a giant map. The map is the Earth, and you need to find specific locations. Now, to make sure you can find the next pit stop or treasures accurately, you need a set of rules for reading and describing locations on the map.

That set of rules is like a Coordinate Reference System (CRS).

A CRS defines how to assign coordinates (such as X and Y on a grid) to places on the map.

When there is a consistent way to find places on a map, everyone uses the same method to describe locations accurately.

Coordinate Reference System (CRS)

A Coordinate Reference System (CRS) is a system that uses numbers to precisely pinpoint locations on maps or the Earth’s surface, ensuring everyone uses the same rules for describing positions.

By defining sets of coordinates and a standardised framework, it offers a consistent way to specify locations, making it possible for maps and geographic data to be accurately interpreted and shared.

A CRS typically includes a reference point, a set of axes, and a unit of measurement.

What Purpose Does a CRS Serve?

CRS is primarily used to describe how coordinates are represented, mapped, and interpreted in a specific geographic or projected space. It is used for locating and referencing points on the Earth’s surface accurately.

CRS is used in geography (the study of the Earth’s landscapes, environments, places, and the relationships between people and their surroundings) and cartography (the design, production, and interpretation of maps, which are graphical representations of geographical information).

Different Types of CRS

  • Geographic CRS: Based on a spherical or ellipsoidal model of the Earth’s surface, commonly using latitude and longitude coordinates.
  • Projected CRS: Maps the three-dimensional spherical or ellipsoidal Earth onto a two-dimensional plane, such as a map or a flat surface. Examples include Universal Transverse Mercator (UTM) and State Plane Coordinate Systems.
  • Vertical CRS: Specifies elevations or depths relative to a reference surface (e.g., sea level).

Some examples of commonly used CRS include:

How CRS is Used in Property and Real Estate

Coordinate Reference Systems (CRS) play a crucial role in property and real estate in several ways:

  • Property Identification:
    CRS can be used to precisely locate and identify properties. Property boundaries, corners, and specific locations can be accurately described using coordinates, which is essential for legal and cadastral (land ownership) records.
  • Mapping and Surveying:
    Surveyors use CRS to create property surveys and maps. These maps are crucial for property transactions, boundary disputes, and construction projects. Accurate coordinates ensure that properties are properly defined.
  • Land Registration:
    When properties are bought or sold, accurate coordinates and CRS are used to update land registration records. This helps ensure the legality of property transactions and reduces the likelihood of property disputes.
  • Zoning and Planning:
    Urban and regional planners use CRS to map out zoning areas, plan infrastructure, and make decisions about land use. This information is crucial for developers, homeowners, and local governments.
  • Property Valuation:
    CRS can be used in property valuation models to assess the value of properties based on their location, proximity to amenities, and other geographic factors.
  • Real Estate Marketing:
    Real estate agents and online platforms often use mapping systems that rely on CRS to display property locations accurately. This makes it easier for buyers to understand the property’s surroundings.
  • Environmental Impact Assessment:
    When considering property development, CRS can be used to assess the potential environmental impact, taking into account factors like proximity to water bodies, floodplains, and protected areas.
  • Infrastructure Development:
    CRS is used in the planning and construction of transportation networks, utilities, and other infrastructure. It helps ensure that developments are located optimally and adhere to safety standards.
  • Disaster Risk Assessment:
    CRS is also essential in assessing properties’ vulnerability to natural disasters, such as floods or earthquakes. This information is vital for insurance purposes and disaster preparedness.

As you can see Coordinate Reference Systems (CRS) play a pivotal role in many facets of property and real estate management, and are used widely by proptechs.

Read more from The Proptech Cloud

The Property Lifecycle

Discover the extensive property lifecycle and how it connects with other sectors. This infographic highlights the key phases and processes involved.

Why Is It So Difficult To Parse Addresses?

This blog explores what address parsing is and why it presents such unique challenges. Discover the intricacies behind address parsing and why getting it right is more complicated than it first appears.

How To Set Coordinate Reference Systems (CRS) In Snowflake Using Spatial Reference Identifiers

When working with geospatial data and mapping, you often need to specify the CRS for accurate and consistent spatial referencing and calculations. We guide you how.

Crafting a Storm Surge and Hurricane Risk Rating for Coastal Properties

A high-level approach to developing a storm surge and hurricane risk rating system to guide stakeholders with a vested interest in coastal properties.

How Proptech Is Revolutionising Real Estate

Proptech is the dynamic intersection of property and technology, and it’s reshaping real estate. And there’s still a huge potential for growth.

What is H3?

What is H3?

There are a number of geospatial indexing systems which caters to spatial data types, query requirements, and use cases, with the choice often depending largely on the needs of your geospatial application and type of data. H3 is the relatively newer kid on the geospatial block, promising accuracy and scalability. Let’s delve in to understand its defining characteristics, how it works, and its practical applications.

What is H3?

H3 is a geospatial indexing system developed by Uber Technologies. It’s designed to partition the Earth’s surface into a hierarchical grid of hexagons. Each hexagon is assigned a unique H3 index, and this grid provides a way to represent and analyse geographic data with consistent precision.

In simpler terms, H3 is a way of breaking down the world into pieces, similar to how a jigsaw puzzle has pieces that fit together. These pieces are shaped like hexagons, like the honeycomb in a beehive.

These hexagons come in different sizes, so bigger hexagons can be used to talk about big areas like a country, whereas small hexagons can be used to talk about tiny areas like a neighbourhood.

Each of these hexagons is assigned a special code to help computers and maps understand where a place is on Earth. So instead of saying you’re at a certain latitude or longitude, you can simply give the code and your location can be pinpointed exactly.

Key characteristics of H3

  1. Hierarchical Grid
    This geospatial indexing system uses a hierarchical structure with multiple levels of hexagons. At each level, hexagons are subdivided into smaller hexagons, providing a scalable way to represent locations at different levels of detail.
  2. Uniform Precision
    Uniform precision across the globe means that hexagons at the same level of the hierarchy will represent approximately the same area, and are consistently spaced between hexagons.
  3. Spatial Relationships
    H3 provides better spatial relationships than traditional rectangular grids like latitude and longitude or Geohash. Hexagons have a more natural fit for mapping many real-world features and are less prone to distortions, especially near the poles.
  4. Resolution Levels
    By supporting multiple resolution levels, this system allows users to choose the appropriate level of detail for their application. Higher resolution levels provide more precision but may result in a larger number of hexagons to manage.
  5. Efficient Spatial Queries
    H3 makes it efficient to perform spatial queries, such as point-in-polygon tests, nearest-neighbor searches, and spatial aggregations. This is particularly valuable for applications like ride-sharing, logistics, and urban planning.
  6. Open Source
    H3 is open-source and available to the public, making it accessible for developers and researchers to use and contribute to its development.
  7. Geospatial Libraries
    H3 has been integrated into various geospatial libraries and programming languages, making it easier for developers to work with this geospatial indexing system in their applications.

How does H3 work?

Here’s a technical explanation of how H3 works:

  1. Hexagonal Grid
    H3 starts by subdividing the Earth’s surface into hexagonal grids. These hexagons are the basic building blocks of the system.
  2. Hierarchical Levels
    H3 employs a hierarchical approach with multiple zoom levels. At each zoom level, the hexagons are divided into smaller hexagons. This hierarchy allows for representing locations with varying levels of precision.
  3. Unique Hexagon IDs
    Each hexagon in the grid is assigned a unique identifier called an H3 index. These indices are used to identify specific geographic areas. An H3 index consists of two parts: a base cell and a resolution level. The base cell determines the general area, and the resolution level refines the precision within that area.

What does H3 look like?

This geospatial indexing system partitions the globe into hexagons for accurate analysis, as indicated in this image.

Geohash vs H3 Comparison

Source: Uber

Real estate applications of H3

As you can imagine, a geospatial indexing system developed by ride-share company, Uber would make it indispensable for ride-sharing and navigation, optimising driver and passenger matching, but also in determining best pickup and drop off points, fare calculations and route planning.

Due to its ability to represent geo locations accurately and analyse geographical data efficiently, it has wide appeal and vast uses in real-estate too. In most situations, anytime you might use the more commonly used Geohash, you could potentially use H3.

So, how does H3 compare?

H3 is one of the geospatial indexing systems at your disposal, answering to various spatial data types, query requirements, and use cases. However, the choice between using H3 and other indexing systems depends largely on the needs of your geospatial application and type of data.

Read how H3 and Geohash compare if you’re considering which system to adopt.

Snowflake releases H3 functionality

Snowflake provides SQL functions that enable you to use H3 with GEOGRAPHY objects.
This preview feature is now available to all accounts.

Read more from The Proptech Cloud

The Property Lifecycle

Discover the extensive property lifecycle and how it connects with other sectors. This infographic highlights the key phases and processes involved.

Why Is It So Difficult To Parse Addresses?

This blog explores what address parsing is and why it presents such unique challenges. Discover the intricacies behind address parsing and why getting it right is more complicated than it first appears.

How To Set Coordinate Reference Systems (CRS) In Snowflake Using Spatial Reference Identifiers

When working with geospatial data and mapping, you often need to specify the CRS for accurate and consistent spatial referencing and calculations. We guide you how.

Crafting a Storm Surge and Hurricane Risk Rating for Coastal Properties

A high-level approach to developing a storm surge and hurricane risk rating system to guide stakeholders with a vested interest in coastal properties.

How Proptech Is Revolutionising Real Estate

Proptech is the dynamic intersection of property and technology, and it’s reshaping real estate. And there’s still a huge potential for growth.

What is a Geohash and How is it Used?

What is a Geohash and How is it Used?

What is a geohash and how is it used? We break it down here.

What is a Geohash?

Geohashing is a geocoding system that encodes geographic coordinates (latitude and longitude) into a short and compact string of characters.

Think of it like a secret code for locations on Earth – a short and easy-to-understand code. It turns a place’s latitude and longitude, which are like its coordinates on a big map, into a simple code.

Imagine you want to tell someone exactly where you are in the world.

Instead of saying, “I’m at latitude 40.7128 degrees North and longitude 74.0060 degrees West,” you can say, “I’m at 6gkzwgjz.”

This shorter code still tells them exactly where you are but is much easier to share or remember.

In a nutshell, a geohash is a clever way to turn complex latitude and longitude coordinates into simple codes that make it easier to talk about places and share location information.

This is also what makes geohash a versatile tool, making it easier to work with location-based data and services in a wide range of industries and applications.

How Does Geohash Work?

The main concept behind Geohash is to divide the world into a grid of rectangles and then represent each of these rectangles with a unique code. This code becomes shorter as you zoom out to cover larger areas and gets longer as you zoom in for more precision.

Here’s a technical explanation of how Geohash works:

  1. Dividing the world into rectangles
    Geohash starts by dividing the Earth into a grid of rectangles. The whole Earth is initially represented by one big rectangle.
  2. Choosing a binary representation
    Each rectangle is further divided into smaller rectangles. Geohash uses a binary search approach to determine which half of a rectangle contains a given point.
    It assigns a binary digit of 1 for the upper half of the rectangle and 0 for the lower half.
  3. Building the geohash string
    – Starting with the whole Earth as one big rectangle, geohash determines whether a point falls into the top or bottom half (binary digit 1 or 0) and appends that digit to the geohash string.
    – The Earth is then divided into the top or bottom half based on the chosen digit.
    – This process is repeated iteratively until you have the desired level of precision or length in the geohash string.
  4. Precision and length of the geohash
    – The length of the geohash string determines the level of precision: A shorter geohash represents a larger area, while a longer geohash represents a smaller and more precise area.
    – For example, a geohash of length 5 might represent a region the size of a city, while a geohash of length 10 could pinpoint a location within a few meters.
  5. Encoding characters
    – To enable the geohash string to be more easily read by humans and generally be more user-friendly, it translates the binary digits into a set of characters. Geohash typically uses a character set of 32 characters: 0-9 and the letters a through z (excluding i, l, o).
  6. Final geohash
    – The result is a geohash string that represents a specific geographic location. This string is both compact and can be easily shared or stored.

What Does Geohash look like?

Geohash divides the world into a grid of rectangles, as indicated in this portion of the world map.

Geohash

Real Estate Applications of Geohash

There are many practical applications for geohash across a broad range of industries.

Here we’ve narrowed down these examples to real-estate uses for geohash:

  • Location-based searches: Geohash is used in location-based search engines and applications, showing nearby points of interest, businesses, or places based on their current location or a specified area.
  • Geofencing: Geohash is employed to create geofences, or virtual boundaries, which can be used for triggering actions or alerts when a device or user enters or exits a specific geographic area, such as location-based marketing, asset tracking, and security applications.
  • Mapping and cartography: Geohash is used in cartography to represent geographic data efficiently. It can simplify the storage and retrieval of spatial information in mapping systems.

These are just a few examples, and the applications of geohash continue to expand as location-based data becomes increasingly important across various domains.

The simplified representation of geographic coordinates makes geohash more accessible and user-friendly, which is why it is such a versatile geocoding system with a wide range of uses in real-estate and beyond.

Read more from The Proptech Cloud

The Property Lifecycle

Discover the extensive property lifecycle and how it connects with other sectors. This infographic highlights the key phases and processes involved.

Why Is It So Difficult To Parse Addresses?

This blog explores what address parsing is and why it presents such unique challenges. Discover the intricacies behind address parsing and why getting it right is more complicated than it first appears.

How To Set Coordinate Reference Systems (CRS) In Snowflake Using Spatial Reference Identifiers

When working with geospatial data and mapping, you often need to specify the CRS for accurate and consistent spatial referencing and calculations. We guide you how.

Crafting a Storm Surge and Hurricane Risk Rating for Coastal Properties

A high-level approach to developing a storm surge and hurricane risk rating system to guide stakeholders with a vested interest in coastal properties.

How Proptech Is Revolutionising Real Estate

Proptech is the dynamic intersection of property and technology, and it’s reshaping real estate. And there’s still a huge potential for growth.